Showing posts with label Machine Learning. Show all posts
Showing posts with label Machine Learning. Show all posts

Monday 2 January 2023

An overview of the GPT-3 model and its capabilities

 OpenAI's GPT-3 (Generative Pretrained Transformer-3) is one of the most advanced and capable artificial intelligence models to date. In this article, we will provide an overview of the GPT-3 model and its capabilities.

GPT-3 is a deep learning-based language model that has been trained on a massive dataset of text from the internet. This training allows the model to generate text that is coherent and relevant to a given prompt, making it an incredibly versatile and capable tool for a wide range of applications.

One of the key strengths of GPT-3 is its ability to generate high-quality text. The model can write articles, stories, and poems that are indistinguishable from those written by humans. It can also translate text, summarize articles, and answer questions with remarkable accuracy. This makes GPT-3 a valuable tool for tasks such as language translation, content creation, and information retrieval.

In addition to its text generation capabilities, GPT-3 is also capable of performing a wide range of other NLP (Natural Language Processing) tasks. For example, the model can identify the named entities in a text, recognize relationships between entities, and classify text into different categories. These capabilities make GPT-3 a valuable tool for tasks such as sentiment analysis, text classification, and named entity recognition.

Another impressive feature of GPT-3 is its ability to learn from examples and perform zero-shot learning. This means that the model can perform a new task without being specifically trained on that task, simply by being given a few examples. For example, GPT-3 can perform arithmetic calculations, generate code in various programming languages, and answer trivia questions, all without being specifically trained on these tasks.

Finally, GPT-3 is also notable for its ability to understand and generate code. The model can generate code snippets in a variety of programming languages and can even complete code snippets that are partially written. This makes GPT-3 a valuable tool for software development, as it can automate many routine tasks and reduce the time and effort required to complete projects.

In conclusion, OpenAI's GPT-3 is an incredibly advanced and capable model that has the potential to revolutionize many different industries and applications. Its ability to generate high-quality text, perform a wide range of NLP tasks, learn from examples, and understand and generate code make it a valuable tool for tasks ranging from content creation and information retrieval to software development and beyond. As the field of AI continues to advance, it will be exciting to see how GPT-3 and other models like it will be used to improve and simplify our lives.

What is your usecase of Chat-GPT? Comment and let us know.

Friday 23 December 2016

Feature Scaling with Python and Sklearn

feature scaling with python
Feature Scaling with Python and Sklearn

Feature Scaling with Python and Sklearn

Sometime before applying a machine learning algorithm on your dataset, first you have to do some pre-processing for your data. For this purpose Sklearn provide a package to deal with such scenario. Here We will use that to make our work easy. Pre-processing may include Standardization, normalization, Binarization, imputation of missing value etc. Now get ready and start importing !
importing pandas, and numpy
import pandas as pd 
import numpy as np
Nothing special, Just loading our data
data=pd.read\_csv(r'train.csv')
Fare= data['Fare'].values[:40]
Check our input
print Fare
Output:
[   7.25     71.2833    7.925    53.1       8.05      8.4583   51.8625
   21.075    11.1333   30.0708   16.7      26.55      8.05     31.275
    7.8542   16.       29.125    13.       18.        7.225    26.       13.
    8.0292   35.5      21.075    31.3875    7.225   263.        7.8792
    7.8958   27.7208  146.5208    7.75     10.5      82.1708   52.
    7.2292    8.05     18.       11.2417]
This would be our input data which is going to be scaled.
Now starting our, first import pre-processing from sklearn. All the other magic tools are under the pre-processing.
from sklearn import preprocessing

scale() Function:

The function scale provide a basic overview of pre-processing. The scale function will transform your data between -1 to 1.
Apply the function to our input data(Fare) and store the output into other variable called fare_scaled.
fare_scaled= preprocessing.scale(Fare)
Check the scaled input :
print fare_scaled
Output:
[-0.51857041  0.88523827 -0.50377232  0.4866039  -0.50103193 -0.49208073
  0.45947406 -0.2154835  -0.43343642 -0.01826765 -0.31139708 -0.09545451
 -0.50103193  0.00813216 -0.50532447 -0.32674325 -0.03900252 -0.39251257
 -0.28289705 -0.51911849 -0.10751222 -0.39251257 -0.50148793  0.10075727
 -0.2154835   0.01059851 -0.51911849  5.08826339 -0.5047764  -0.50441247
 -0.06978694  2.5346778  -0.50760886 -0.44732033  1.12392606  0.46248848
 -0.51902641 -0.50103193 -0.28289705 -0.43105996]
The data has been scaled and now its lie between -1,1.

Scaling features to a range

Sometime data should be scaled between some minimum and maximum value, often between zero and one. This can be achieved using MinMaxScaler or MaxAbsScaler. Let’s try that.
First define our min_max_scaler and let’s say we want to scale our data between a range 0 to 5.
min_max_scaler= preprocessing.MinMaxScaler(feature_range=(0,5)) 
print min_max_scaler
Output:
MinMaxScaler(copy=True, feature_range=(0, 5))
Now transform our data using min_max_scaler
fare_transformed= min_max_scaler.fit_transform(Fare.reshape(-1,1))

print fare_transformed.reshape(1,-1) #Using reshape(1,-1) just for better view
Output:
[[  4.88710781e-04   1.25223927e+00   1.36839019e-02   8.96784283e-01
    1.61274558e-02   2.41090802e-02   8.72593099e-01   2.70745773e-01
    7.64011338e-02   4.46599550e-01   1.85221386e-01   3.77773434e-01
    1.61274558e-02   4.70139771e-01   1.22998729e-02   1.71537484e-01
    4.28110644e-01   1.12892190e-01   2.10634347e-01   0.00000000e+00
    3.67021797e-01   1.12892190e-01   1.57208484e-02   5.52731893e-01
    2.70745773e-01   4.72338970e-01   0.00000000e+00   5.00000000e+00
    1.27885837e-02   1.31130877e-02   4.00660737e-01   2.72301437e+00
    1.02629264e-02   6.40211123e-02   1.46507282e+00   8.75281009e-01
    8.21034112e-05   1.61274558e-02   2.10634347e-01   7.85201838e-02]]
The scaled data is now lie in range between 0 to 5. Here we can provide any range in which we want our data to be scaled.
The transformation for MinMaxScaler() is given by:
X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min
where min, max = feature_range.
Now Let’s move to our other scaling function MaxAbsScaler.It scale each feature by its maximum absolute value.
first define our maxabs scaler
maxabs_scaler= preprocessing.MaxAbsScaler()
print maxabs_scaler
Output:
MaxAbsScaler(copy=True)
Now transform the data using maxabs_scaler.fit_transform(). The output is stored into another variable called fare_maxabs_scaled.
fare_maxabs_scaled= maxabs_scaler.fit_transform(Fare.reshape(-1,1))
print fare_maxabs_scaled.reshape(1,-1) #reshape is just for preety view
Output:
[[ 0.02756654  0.27103916  0.03013308  0.20190114  0.03060837  0.03216084
   0.19719582  0.08013308  0.04233194  0.11433764  0.0634981   0.10095057
   0.03060837  0.11891635  0.02986388  0.0608365   0.11074144  0.04942966
   0.06844106  0.02747148  0.09885932  0.04942966  0.03052928  0.13498099
   0.08013308  0.11934411  0.02747148  1.          0.02995894  0.03002205
   0.10540228  0.55711331  0.02946768  0.03992395  0.3124365   0.19771863
   0.02748745  0.03060837  0.06844106  0.04274411]]

Normalization

Normalization is the process of scaling individual samples to have unit norm. The function normalize() provides a quick and easy way to perform normalization on a array-like dataset, either using the l1 or l2 norms:
Check Example :
Normalization using normalize(x)
fare_normalized = preprocessing.normalize(Fare.reshape(1,-1), norm="l1")
Check the output
print fare_normalized
Output:
[[ 0.00586493  0.057665    0.00641097  0.04295552  0.00651209  0.00684239
   0.04195444  0.01704873  0.00900634  0.02432593  0.01350955  0.02147776
   0.00651209  0.02530007  0.0063537   0.01294328  0.02356082  0.01051642
   0.01456119  0.0058447   0.02103284  0.01051642  0.00649526  0.02871791
   0.01704873  0.02539108  0.0058447   0.21275522  0.00637392  0.00638735
   0.02242489  0.11852876  0.0062694   0.00849403  0.0664725   0.04206567
   0.0058481   0.00651209  0.01456119  0.00909403]]

Binarization

Binarization is the process of thresholding numerical features to get boolean values. it binarize data (set feature values to 0 or 1) according to a threshold.Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0.
Check the example Below. First check what our Fare data looks alike .
print Fare
Output:
[   7.25     71.2833    7.925    53.1       8.05      8.4583   51.8625
   21.075    11.1333   30.0708   16.7      26.55      8.05     31.275
    7.8542   16.       29.125    13.       18.        7.225    26.       13.
    8.0292   35.5      21.075    31.3875    7.225   263.        7.8792
    7.8958]
Now Let’s Binarize it. Divide it into two groups fare less than 15.0 and fare more than 15.0 .
Put a threshold value equal to 15.0 so that binarizer convert fare less than 15.0 as 0 and fare more than 15.0 as 1.
Let’s do this.
First define our binarizer:
binarizer = preprocessing.Binarizer(threshold=15.0)
print binarizer
Output:
Binarizer(copy=True, threshold=15.0)
Now transform our data and store it in variable called fare_binarized.
fare_binarized=binarizer.transform(Fare.reshape(-1,1))
print fare_binarized.reshape(1,-1)
Output:
[[ 0.  1.  0.  1.  0.  0.  1.  1.  0.  1.  1.  1.  0.  1.  0.  1.  1.  0.
   1.  0.  1.  0.  0.  1.  1.  1.  0.  1.  0.  0.  1.  1.  0.  0.  1.  1.
   0.  0.  1.  0.]]
Here Values above 15.0 are converted into 1 and value less than or equal to are converted to 0.

Custom transformers

Sklearn provides some method for custom transformation of data. If a function of your choice isn’t listed then you can create your own function for transformation using FunctionTransformer() function.
Check example below
First define our input let’s it is
x=np.array([[121,424],[986,361]])
print x
Output:
[[121 424]
 [986 361]]
Let’s say we want to take square root of our input. We will do this with the help of sklearn.
Call the function FunctionTransformer() with appropriate function(here will take square root of the given input, so will use np.sqrt )
custom_transformer = preprocessing.FunctionTransformer(np.sqrt)
Now Transform our input using custom_transformer function
x_transformed= custom_transformer.transform(x)
Let’s Check what we have transformed.
print x_transformed
Output:
[[ 11.          20.59126028]
 [ 31.40063694  19.        ]]
As we can see the output is perfect square root of input x. More about custom transformation can be learn from docs
In feature scaling, Imputation of missing value and Encoding Categorical feature is also important. I have separately written on these two topics. You should read these to complete feature scaling.
  1. Imputation of Missing values using Sklearn
  2. Predictive Modeling with Categorical Variable
Thanks for reading.